Supported TLS cipher suites

Hi there! Does Fly have any documentation (and/or published policy) on supported TLS protocols and cipher suites?

In migrating an app to Fly, I’ve noticed there are substantially fewer ciphers supported. This in turn breaks a client of my app which depends on an unsupported protocol/cipher pair. (I can likely fix that problem, but it revealed a gap in my understanding of how fly works here.)

On the surface level, it looks like fly is far less permissive than other providers’ defaults, triggering at least this issue for me.

Here’s what Fly seems to support “out of the box”:

$ nmap --script ssl-enum-ciphers -p 443 <myapp>.fly.dev
Starting Nmap 7.92 ( https://nmap.org ) at 2022-02-04 09:25 PST
Nmap scan report for <myapp>.fly.dev (109.105.xxx.xxx)
Host is up (0.10s latency).

PORT    STATE SERVICE
443/tcp open  https
| ssl-enum-ciphers:
|   TLSv1.2:
|     ciphers:
|       TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
|     compressors:
|       NULL
|     cipher preference: client
|   TLSv1.3:
|     ciphers:
|       TLS_AKE_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
|       TLS_AKE_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_AKE_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
|     cipher preference: client
|_  least strength: A

By comparison, here’s the same result for the app as fronted by cloudflare:

$ nmap --script ssl-enum-ciphers -p 443 <myapp-on-cloudflare>
Starting Nmap 7.92 ( https://nmap.org ) at 2022-02-04 09:41 PST
Nmap scan report for <myapp-on-cloudflare> (104.26.xxx.xxx)
Host is up (0.15s latency).

PORT    STATE SERVICE
443/tcp open  https
| ssl-enum-ciphers:
|   TLSv1.0:
|     ciphers:
|       TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
|       TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
|       TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
|       TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A
|       TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 2048) - C
|     compressors:
|       NULL
|     cipher preference: server
|     warnings:
|       64-bit block cipher 3DES vulnerable to SWEET32 attack
|   TLSv1.1:
|     ciphers:
|       TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
|       TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
|       TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
|       TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A
|     compressors:
|       NULL
|     cipher preference: server
|   TLSv1.2:
|     ciphers:
|       TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256-draft (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256-draft (ecdh_x25519) - A
|       TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) - A
|       TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) - A
|       TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) - A
|       TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) - A
|       TLS_RSA_WITH_AES_256_CBC_SHA256 (rsa 2048) - A
|       TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) - A
|     compressors:
|       NULL
|     cipher preference: client
|   TLSv1.3:
|     ciphers:
|       TLS_AKE_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
|       TLS_AKE_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_AKE_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
|     cipher preference: client
|_  least strength: C

FWIW, here’s a doc from cloudflare where they publish their supported suites, along with a repo which tracks changes.

Hey there!

This isn’t well documented for our platform.

We support a smaller set of cipher suites because we’re using rustls as part of our custom Rust-based proxy.

Most CDNs or load balancers use OpenSSL, LibreSSL or BoringSSL. They have much bigger support for cipher suites from previous TLS versions or even newer versions.

We only support TLSv1.2 and TLSv1.3 with strong ciphers.

Here’s the list of cipher suites we support:

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384

As far as our testing goes, this gives us wide and secure coverage. We do not support very old browsers though.

You can see which clients we support by looking at these test results.

Hope this helps!

1 Like

Thanks for the response! This seems to confirm our test results. Probably something we can live with; looks like we’d need to terminate SSL ourselves (or front with a more permissive proxy like cloudflare) if we need broader protocol/ciphersuite compatibility.